
Tuning HDF5 for Lustre File Systems
Mark Howison∗, Quincey Koziol†, David Knaak‡, John Mainzer†, John Shalf∗

∗Computational Research Division
Lawrence Berkeley National Laboratory

One Cyclotron Road, Berkeley, CA 94720
Email: {mhowison,jshalf}@lbl.gov

†The HDF Group
1901 S. First Street, Suite C-2

Champaign, IL 61820
Email: {koziol,mainzer}@hdfgroup.org

‡Cray Inc.
901 Fifth Avenue, Suite 1000

Seattle, WA 98164
Email: knaak@cray.com

Abstract—HDF5 is a cross-platform parallel I/O library that
is used by a wide variety of HPC applications for the flexibility
of its hierarchical object-database representation of scientific
data. We describe our recent work to optimize the performance
of the HDF5 and MPI-IO libraries for the Lustre parallel
file system. We selected three different HPC applications to
represent the diverse range of I/O requirements, and measured
their performance on three different systems to demonstrate
the robustness of our optimizations across different file system
configurations and to validate our optimization strategy. We
demonstrate that the combined optimizations improve HDF5
parallel I/O performance by up to 33 times in some cases
– running close to the achievable peak performance of the
underlying file system – and demonstrate scalable performance
up to 40,960-way concurrency.

I. INTRODUCTION

Centralized parallel I/O subsystems are the norm for large
supercomputing resources that serve the HPC community.
However, the exponentially increasing parallelism of leading-
edge HPC systems is pushing existing storage solutions to the
limit, and the performance of shared-file I/O implementations
often falls orders of magnitude below the maximum theoretical
bandwidth of the hardware. The fallback position of writing
one-file-per-processor can recoup lost performance, but as
we enter the petascale era, and 100,000-way concurrency
becomes commonplace, this approach results in untenable data
management issues and overwhelms parallel file systems with
difficult-to-parallelize metadata operations. Increasingly, the
burden is falling on application developers to navigate the intri-
cacies of effective parallel I/O, for instance by implementing
their own I/O aggregation algorithms or experimenting with
file system striping parameters.

Middleware layers like MPI-IO and parallel HDF5 address
these problems by hiding the complexity of performing co-
ordinated I/O to single, shared files, and by encapsulating
general purpose optimizations such as collective buffering.
However, the optimization strategy is dependent on the file
system software and the system hardware implementation.
Maintaining I/O performance requires constant updates to the
optimization strategy for these middleware layers. Ultimately,
our goal is to ensure that application developers have a
performance-portable I/O solution that minimize changes to
their use of the middleware APIs, regardless of the underlying
file system – through different generations of GPFS, Lustre,

or any other parallel file system that emerges.
In particular, file systems such as Lustre [1] require re-

consideration of file layouts and I/O strategies from top-
to-bottom rather than mere parameter tuning. Lustre is a
scalable, POSIX-compliant parallel file system designed for
large, distributed-memory systems, and can therefore support
any POSIX-compliant I/O pattern. It also features separated
metadata and object storage and uses a client-server model
with a server-side, distributed lock manager that maintains
coherency across all clients. Yet, in practice large, contiguous
I/O operations that are aligned to avoid the lock manager
perform best, and certain metadata operations are best avoided.

In this paper, we will describe the optimizations that were
developed to overcome the performance pitfalls of the Lustre
file system and specifically how they were appied to enable
scalable performance for parallel applications creating HDF5
files. The optimizations required changes that spanned HDF5
and the lower-level MPI-IO layer, but ultimately result in
performance that runs close to the maximum practical per-
formance of the file system implementation.

To motivate our optimization strategy and validate the per-
formance improvements delivered by our optimizations strat-
egy, we selected three HPC applications (GCRM, VORPAL,
and Chombo) to represent three common I/O patterns found
in the DOE Office of Science computing workload. The key
patterns represented by these applications are: rectilinear 3D
grids with balanced, cubic partitioning; rectilinear 3D grids
with unbalanced, rectangular partitioning; and contiguous but
size-varying arrays, such as those found in adaptive mesh
refinement. For these three patterns on production systems
with a range of concurrencies up to 40,960-way, we observe
write bandwidths that are 1.4× to 33× those of the original
approaches used by these applications.

II. BACKGROUND

A. HDF5

The Hierarchical Data Format v5 (HDF5) [2] I/O library
stores data in binary files organized for high-performance
access, using a machine-independent, self-describing format.
HDF5’s “object database” data model enables users to focus
on high-level concepts of relationships between data objects
rather than descending into the details of the specific layout
of every byte in the data file.

The HDF5 library is designed to operate on large HPC
systems, relying on an implementation of the MPI standard for
communication and synchronization operations and optionally
also for collective I/O operations. The HDF5 library’s design
includes a modular “virtual file layer” for performing I/O to
files using software drivers. HDF5 can either use the MPI-
IO routines for collective and independent I/O operations (the
“MPI-IO virtual file driver”), or can use a combination of MPI
communications and POSIX file I/O operations to bypass MPI-
IO when an application’s I/O pattern does not make good use
of MPI-IO (the “MPI-POSIX virtual file driver”).

The Network Common Data Form (netCDF) [3] library also
offers a flexible data model and machine independence similar
to HDF5. The most recent version, netCDF-4, has adopted
HDF5 as its intermediate layer. Thus, the optimizations we
describe in this paper will seamlessly apply to the same I/O
patterns in netCDF-4.

Because netCDF did not introduce parallel support until
netCDF-4, the pNetCDF library [4] was designed as a parallel
interface to the original netCDF file format and is built directly
on top of MPI-IO. pNetCDF does not produce files compatible
with netCDF-4, although applications that use the pNetCDF
API can be adapted to using the netCDF-4 API in a fairly
straightforward manner.

B. Related Work

Many HPC applications perform “append-only” I/O, writing
data to a file that is never revisited during execution. Instead,
the file may be used later to restart the application, loaded into
an analytics or visualization program for post-run analysis,
or simply discarded because a restart was not needed. Both
the Parallel Log-structured File System (PLFS) [5] and the
Adaptable I/O System (ADIOS) [6] can accelerate this use
case. PLFS uses file-per-processor writes (or what it terms N-
N access) to avoid the lock contention problems that arise with
parallel access to shared files. ADIOS offloads I/O operations
onto designated I/O nodes, allowing a computational code
to execute non-blocking I/O routines and continue running
while I/O is handled in the background. ADIOS also provides
interoperability with existing data formats like HDF5 and
netCDF, although a post-processing step is necessary to render
such a file from the internal format used by ADIOS.

PLFS and ADIOS can avoid the performance pitfalls of
coordinated, shared file access by using independent access.
However, if there are a very large number of processes, the
number of files created becomes a bottleneck for the Lustre
metadata server and can become a file management headache
for the user. Also, ADIOS sheds many features of HDF5 in
order to achieve performance. ADIOS is able to write to HDF5
files, but its simpler data model does not support key features
of HDF5 for implementing complex data models, such as
HDF5’s hierarchical storage model and full capabilities for
attaching attributes to objects. The goal of our work is to
maintain the rich data model and support the existing codebase
of HDF5 by matching the performance of writing a single,
shared-file to that of writing independent files.

One key strategy for bringing single-shared-file performance
up to the level of the independent access approach used by
PLFS and ADIOS is to employ “collective” optimizations,
which have a long history of use in different MPI-IO im-
plementations (see [7] for an overview). In general, collective
optimizations use the additional information provided by a
complete view of an I/O operation to decrease the number of
I/O accesses and reduce latency. One such optimization called
two-phase I/O [8], [9] or collective buffering [10] assigns a
subset of tasks to act as “aggregators”. Aggregators gather
smaller, non-contiguous accesses into a larger, contiguous
buffer in the first phase, and in the second phase write this
buffer to the file system. This optimization has existed for
many years in ROMIO, which is an MPI-IO implementation
from Argonne National Laboratory (ANL) that contains sup-
port for many file systems, including Lustre.

A survey of 50 HPC projects at the National Energy
Research Supercomputing Center found that most HPC ap-
plications already use contiguous access, but that transfer
sizes varied by several orders of magnitude (from several
kilobytes to hundreds of megabytes) [11]. On parallel file
systems like Lustre that use server-side file extent locks,
varying transfer sizes often lead to accesses that are poorly
distributed and misaligned relative to the lock boundaries.
Thus, one of the main benefits of collective buffering is that
the buffer size can be set to a multiple of the lock granularity,
which can drastically reduce lock contention. From a software
engineering perspective, it is best that this feature exist in a
layer of the I/O stack below the application, such as MPI-IO,
because modifying an application’s I/O operations to align to
lock boundaries (e.g., by adding buffering or padding the I/O
operations) is a complexity that most application developers
wish to avoid.

Within this context, Liao and Choudhary [12] explored three
modifications to the ROMIO collective buffering algorithm
to respect lock boundaries when partitioning the shared file
among aggregators. The first strategy is to take the simple,
even partitioning used by ROMIO and move each boundary
to the nearest lock boundary. The other two strategies use
cyclic assignments of aggregators to I/O servers, either in a
one-to-one mapping (called “static-cyclic”) or a several-to-
one mapping (“group-cyclic”). Liao and Choudhary presented
results at up to 1,024-way concurrency and concluded that a
group-cyclic approach is best for file systems like Lustre and
GPFS that use server-side lock mechanisms.

Dickens and Logan [13] have reported concurring results
for the static- and group-cyclic approaches using their Y-Lib
library on Lustre systems, again at up to 1,024-way concur-
rency. The static-cyclic approach was also described earlier by
Coloma et al. [14] under the term “persistent file realms,” but
with results extending to only 64-way concurrency.

We validate these ideas for lock-aligned collective buffering
on Lustre using the Cray implementation of MPI-IO, and with
a more complicated codepath that passes through the HDF5
layer. We also show results for 40,960-way concurrency, which
is 40 times larger than previously published results.

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

Fig. 1. Contiguous HDF5 dataset
storage.

0 1 2 3 4 5 6 7
0
1
2
3

4
5
6
7

Fig. 2. Chunked HDF5 dataset
storage.

Although we found that our methods scaled well, there are
other efforts to prepare collective buffering for scalability to
the petascale. For instance, Nisar et al. [15] suggest setting
aside a subset of tasks, called “I/O delegates”, that are solely
responsible for managing collective I/O operations such as
aggregation. Although we do not pursue that modification
here, it is compatible with the optimizations we present.

III. SOFTWARE MODIFICATIONS

The parallel HDF5 implementation is built on top of the
MPI-IO library. In many cases, we found that performance
optimizations for Lustre required changes that spanned both
the HDF5 and MPI-IO libraries. Our work involved close
cooperation between developers of these respective libraries,
using guidance from detailed performance analysis of the
target applications. Our analysis was facilitated by detailed
traces of the application performance along with integrated
instrumentation of the MPI-IO libraries provided by our col-
laborators at Cray Inc.

A. HDF5

The HDF5 library stores application data in datasets within
HDF5 files. HDF5 datasets are multi-dimensional arrays
whose elements can be composed of integer, floating-point,
or other, more complex, types. A dataset’s elements are either
stored contiguously in a file (Figure 1), or in a chunked form
(Figure 2). A chunked dataset’s elements are stored in equal-
sized chunks within the file, allowing fast access to subsets
of dataset elements, as well as the application of compression
and other filtering operations.

The HDF5 library normally packs data in HDF5 files
together as tightly as possible, instead of aligning data to a
particular byte boundary. However, most parallel file systems
are tuned to perform best when data accesses fall on a partic-
ular chunk boundary. The HDF5 library allows the application
to request alignment of all objects in a file over a particular
size threshold, with the H5Pset_alignment API call. This
allows aligning the chunks for chunked datasets to a favored
block boundary for the file system.

For optimal performance, the dimensions for each chunk can
be chosen so that the subset of the dataset that each parallel
process accesses maps exactly to one chunk in the file. For
example, if 4 processes were involved in performing I/O, the

0 1 2 3 4 5 6 7
0
1
2
3

4
5
6
7

0,0
0,4

4,0
4,4

Fig. 3. Chunked HDF5 dataset with untuned chunk index B-tree.

0 1 2 3 4 5 6 7
0
1
2
3

4
5
6
7

0,0
0,4
4,0
4,4

Fig. 4. Chunked HDF5 dataset with tuned chunk index B-tree.

HDF5 dataset could be divided into 4 × 4 chunks of elements
as shown in Figure 2, with each chunk aligned in the file. This
would minimize lock contention in the parallel file system and
maximize the file system throughput.

HDF5 files contain metadata that is used to store infor-
mation about the datasets and other objects in the file. In
particular, chunked datasets use a B-tree to map requests for
accessing array elements from array coordinates to file offsets
for each chunk, shown in Figure 3. Normally, the B-tree for a
chunked dataset is tuned to maintain a compact form, limiting
the depth and breadth of the B-tree produced. However, when
the dimensions of a dataset are known in advance, the B-
tree node width can be tuned with the H5Pset_istore_k
API call to exactly match the number of chunks that will be
produced, shown in Figure 4. This will minimize the number
of I/O operations to bring the B-tree into memory, greatly
reducing the cost of mapping from array coordinates to file
offsets.

Metadata in HDF5 files is cached by the HDF5 library to
improve access times for frequently accessed items. When
operating in a sequential application, individual metadata items
are flushed to the file (if dirty) and evicted from the metadata
cache. However, when operating in a parallel application, these
operations are deferred and batched together into eviction
epochs, to reduce communication and synchronization over-
head. At the end of an eviction epoch (measured by the amount
of dirty metadata produced), the processes in the application
are synchronized and the oldest dirty metadata items are

H5AC_cache_config_t mdc_config;
hid_t file_id;

file_id = H5Fopen("file.h5", H5ACC_RDWR, H5P_DEFAULT);

mdc_config.version = H5AC__CURR_CACHE_CONFIG_VERSION;
H5Pget_mdc_config(file_id, &mdc_config)

mdc_config.evictions_enabled = FALSE;
mdc_config.incr_mode = H5C_incr__off;
mdc_config.decr_mode = H5C_decr__off;

H5Pset_mdc_config(file_id, &mdc_config);

Fig. 5. Example C code for disabling metadata cache evictions in HDF5.

flushed to the file.
To reduce the frequency of performing small I/O operations,

it is possible to put the eviction of items from the HDF5
library’s metadata cache entirely under the application’s con-
trol with the sequence of API calls shown in Figure 5. This
sequence of calls disables evictions from the metadata cache,
unless H5Fflush is called or the file is closed. Suspending
automatic eviction of cached metadata items also prevents fre-
quently dirtied items from being written to the file repeatedly.
Suspending metadata evictions may not be appropriate for all
applications however, because if the application crashes before
the cached metadata is written to the file, the HDF5 file will
be unusable.

In addition to the application-controlled behavior described
above, two improvements to the HDF5 library were made that
impacted the results described here. The first improvement was
to refactor the HDF5 library’s behavior when the H5Fflush
API routine is called. Previously, this API call would extend
the file’s size on disk to include all space allocated within the
file (but possibly not written to yet). However, when operating
in a parallel application, this operation resulted in a call
to MPI_File_set_size, which currently has very poor
performance characteristics on Lustre file systems. 1 Because
an HDF5 file’s size is not required to be accurately set until
the file is closed, this operation was removed from H5Fflush
and added to the code for closing a file.

The second optimization made to HDF5 again involved
revising the behavior of the metadata cache when flushing
multiple metadata items, either at the end of an eviction epoch
or when closing the file. Previously, the HDF5 library would
only use process 0 for writing dirty metadata items to the
file, since early parallel file systems performed poorly when
multiple processes performed small I/O operations simultane-

1We have contacted the Lustre developers about the
MPI_File_set_size performance issue, and their initial guess was
that all processes were participating in the truncate call. However, our I/O
traces show that only process 0 is calling truncate. Another possibility is that
a large file could be fragmented on disk to the extent that the truncate call
itself is causing the delay, but this seems unlikely to cause the catastrophic
slowdowns we have recorded (on the order of tens of seconds).

ously. However, modern parallel file systems, such as Lustre,
have multiple storage nodes and can easily handle multiple
I/O operations from many processes. With this in mind, the
HDF5 library was modified to divide up the dirty metadata
items into groups, with each process flushing one group of
metadata items simultaneously.

Both of the improvements to the HDF5 library described
above have been incorporated into the publicly available
distribution, beginning with the 1.8.5 release in June, 2010.

B. MPI-IO

The Cray systems integrate MPI-IO capabilities into the
Message Passing Toolkit (MPT). Cray added new algorithms
to the 3.1 and 3.2 releases of MPT to improve I/O work-
load distribution through the use of new collective buffering
techniques that respect Lustre stripe boundaries. The work
described in this paper played a critical role in the early evalua-
tion and tuning these new collective buffering implementations
as MPT evolved.

The collective buffering algorithm used in MPT prior
to release 3.1, CB 0, was based on the original ROMIO
algorithm, which divided the I/O workload equally among
all aggregators without regard to physical I/O boundaries or
Lustre stripes. This method is inefficient when the division of
workload results in multiple aggregators referencing the same
physical I/O block or Lustre stripe, or when each aggregator
has multiple segments of data with large gaps between the
segments. The CB 1 algorithm improved performance over
CB 0 by aggregating data into stripe-sized chunks and align-
ing I/O with stripe boundaries but did not maintain a one-
to-one mapping between aggregators and I/O servers over
multiple I/O calls. The CB 2 algorithm quickly superseded
CB 1 with a much more effective approach to data aggrega-
tion, beginning with MPT release 3.2. The CB 2 algorithm
implements a Lustre-optimized scheme that uses static-cyclic
and group cyclic Lustre stripe-aligned methods described by
Liao and Choudhary [12]. The Cray implementation of these
methods merged the Lustre “abstract device-driver for I/O”
(ADIO) code from Sun Microsystems (available with the

ANL MPICH2 1.1.1p1 release) with its own code to provide
additional tunable parameters to optimize performance.

To control these new features, Cray MPT 3.2 introduces
two new MPI-IO hints: striping_factor sets the Lustre
stripe count at file creation (or defaults to the stripe count of
an existing file) and striping_unit does the same for the
Lustre stripe size. Setting the cb_nodes hint to the stripe
count creates a static-cyclic, one-to-one mapping between
aggregators and OSTs. Alternatively, setting cb_nodes to
a multiple of the stripe count creates a group-cyclic, several-
to-one mapping. The value of the cb_buffer_size hint
is ignored, and the buffer size is instead replaced with
striping_unit.
CB 2 is generally the optimal collective buffering alignment

algorithm to use with MPT on Lustre file systems, because it
minimizes lock contention and reduces I/O time. However,
the communication overhead associated with this algorithm
can exceed the savings in I/O time from accommodating the
lock mechanism under some circumstances. This is the case
if each process is writing small (relative to the stripe size)
segments of data and the offsets for all processes’ data are
spread far apart relative to stripe size. Write performance for
this I/O pattern will be poor whether collective buffering is
used or not, but may be better by setting the MPI-IO hint
romio_cb_write=disable. However, this I/O pattern is
seldom observed in practice.

IV. APPLICATION BENCHMARKS

We have selected three HPC applications that represent
common I/O patterns found in HPC computing. For each of
these, we implemented a stand-alone benchmark to model the
I/O pattern of the application.

A. Global Cloud Resolving Model

The Global Cloud Resolving Model (GCRM), a climate
simulation developed at Colorado State University and led
by David Randall [16], runs at resolutions fine enough to
accurately simulate cloud formation and dynamics. In partic-
ular, it resolves cirrus clouds, which strongly affect weather
patterns, at finer than 4km resolutions. Underlying the GCRM
simulation is a geodesic-grid data structure containing nearly
10 billion total grid cells at the 4km resolution and scaling
from tens of thousands to hundreds of thousands of processors
– an unprecedented scale for atmospheric climate simulation
codes that challenges existing I/O strategies.

Researchers at Pacific Northwest National Lab and LBNL
have developed a data model, I/O library, and visualization
pipeline for these geodesic grids [17]. The I/O library uses
Morton ordering to linearize the indexing of individual cells
in the grid and handles cell-, edge-, and corner-centered values.
Currently, the library implements modules for pNetCDF and
netCDF-4 and writes regular 2D grids (cell index × height)
for cell-centered data and 3D grids (cell index × height
× edge/corner) for edge-centered and corner-centered data.
For our test purposes, we implemented a stand-alone I/O
benchmark that recreates these 2D and 3D array patterns. Our

benchmark uses H5Part, which is a simple veneer library that
sits on top of HDF5. [18]. Our optimizations to HDF5 will
benefit the netCDF-4 module in the GCRM I/O library, since
netCDF-4 uses HDF5 as its lower layer.

The climate simulation code is intended to scale to 1km
resolution at 40,960-way concurrency, and we perform a strong
scaling study with our I/O benchmark up to this scale. Prior to
our optimizations, the GRCM I/O library was able to achieve
only 1 GB/s write bandwidth in tests at 4 km resolution. In
order to keep the I/O time consumption to less than 5% of
the total runtime the GCRM I/O library must sustain at least
2GB/s, and proportionally better performance when scaled to
finer resolutions.

B. VORPAL

VORPAL [19] is a versatile plasma simulation code devel-
oped by Tech-X that enables researchers to simulate complex
physical phenomena in less time and at a much lower cost
than empirically testing process changes for plasma and vapor
deposition processes. The kinetic plasma model incorporated
in it is based on the particle-in-cell algorithm both in the
electromagnetic and electrostatic limit. The I/O activities are
dominated by periodically check pointing the variables, includ-
ing 3D grids for storing scalar or vector field values. Because
of load balancing, the grid decomposition can be uneven across
tasks. We have implemented a stand-alone I/O benchmark
in H5Part that writes 3D vector fields where adjacent tasks’
subfields differ by ±1 in each dimension.

C. Chombo

Chombo [20] is an adaptive mesh refinement (AMR)
package used by applications to implement finite difference
methods for solving partial differential equations on block
structured grids. Chombo provides an framework for rapidly
assembling portable, high-performance AMR applications for
a broad variety of scientific disciplines, including combustion
and astrophysics. To investigate Chombo’s I/O behavior, we
used a standalone benchmark that creates Chombo data struc-
tures, fills them with arbitrary data, and writes to a 1D dataset
in HDF5 using the same I/O interface available in the produc-
tion Chombo library. The benchmark synthesizes the same I/O
patterns used by the full-scale Chombo simulations without the
complexity and overhead of performing the computation. We
are not targeting a specific application, but rather a generic
use case of Chombo’s I/O functionality.

V. EXPERIMENTAL TESTBED

All of our test systems are Cray XTs with large scratch
file systems organized roughly according to the block diagram
shown in Figure 6, although the details of the interconnect
between I/O servers and compute nodes differ among the
systems.

A. JaguarPF

JaguarPF is a 18,688 node Cray XT5 system located at
Oak Ridge National Laboratory (ORNL) with dual six-core

Compute Node I/O Server

Compute Node

Compute Node

.

I/O Server

Compute Node

Disks

Disks

Disks

Disks

SAN

Fabric

Metadata Server (MDS)

Interconnect

Fabric

RAID

Couplet

RAID

Couplet

Lustre, GPFS, and PVFS Storage

Abstract Schematic

Fig. 6. The general architecture of cluster file systems such as Lustre that have separate object and metadata stores. In Lustre, the I/O servers are called
Object Storage Servers (OSSs) and each can implement multiple Object Storage Targets (OSTs) that are visible to the client running on the compute nodes.

AMD Opteron processors and 16GB of memory per node (for
224,256 cores). JaguarPF’s scratch space is served by a center-
wide Lustre file system [21] with 96 Object Storage Servers
(OSSs) serving 672 Object Storage Targets (OSTs), although
Lustre limits the number of OSTs assigned to a single shared
file to 160. The OSSs are backed by 48 Data Direct Network
(DDN) S2A9900 controller couplets configured with 28 tiers
of 8 + 2 RAID6 arrays. A high-performance InfiniBand inter-
connect called the “Scalable I/O Network” (SION) connects all
of the systems at Oak Ridge Leadership Computing Facility to
the OSSs. Compute nodes on JaguarPF are connected through
its SeaStar2+ interconnect to Lustre router nodes that forward
I/O traffic to the JaguarPF segment of SION.

B. Franklin

Franklin is a 9,660 node Cray XT4 system located at
the National Energy Research Scientific Computing Center
(NERSC) with a quad-core AMD Opteron processor and 8GB
of memory per node. Each XT4 node contains a quad-core
2.6 GHz AMD Opteron processor (for 38,640 cores total),
tightly integrated to the XT4 interconnect via a Cray SeaStar2
ASIC and 6.4 GB/s bidirectional HyperTransport interface. All
the SeaStar routing chips are interconnected in a 3D torus
topology, where each node has a direct link to its six nearest
neighbors. The XT4 runs Cray’s Compute Node Linux (CNL)
on compute nodes and SuSE SLES 9.0 on login nodes.

Franklin has two scratch spaces served by separate, dedi-
cated 209 TB Lustre file systems. Each has 24 Object Storage
Servers (OSSs) and one Metadata Server (MDS) connected
directly via the SeaStar2 interconnect in a toroidal configura-
tion to the compute nodes. The 24 OSSs implement a total of
48 OSTs and connect to six DDN 9550 RAID couplets, each
with 16 tiers of 8 + 2 RAID6 arrays.

C. Hopper (Phase 1)

Hopper is a Cray XT5 system that is being delivered to
NERSC in two phases. Hopper Phase 1, which is currently
delivered and operational, has 664 compute nodes each con-
taining two 2.4 GHz AMD Opteron quad-core processors (for
5,312 cores total). When Phase 2 arrives, Hopper will have
over 150,000 compute cores.

Like Franklin, Hopper also has two scratch spaces served
by separate, dedicated 1 PB Lustre file systems. Each has

24 Object Storage Servers (OSSs) that implement 144 OSTs,
and one Metadata Server (MDS). Similar to JaguarPF and
unlike Franklin, Hopper uses Lustre router nodes in the main
SeaStar2 interconnect to forward I/O traffic to the OSSs.

VI. METHODOLOGY

Our results are highly variable because the file systems we
tested are shared resources and therefore prone to contention
from other users. Even in cases of minimal contention for
disk access, there can be contention for the interconnect
between the OSTs and compute nodes from non-I/O MPI
communication (e.g., see [22]). Finally, the complexity and
depth of the I/O software stack and the server-client model
used by Lustre also add to the variability.

We used three techniques to help us attain peak bandwidth
values. First, for each benchmark run, we used three repetitions
separated by 5 or 10 seconds. Second, we reran these groups
of three repetitions at different times over the course of several
weeks. Finally, on Franklin, we were able to monitor the status
of the Lustre file system using an in-house web interface to the
Lustre Monitoring Tool which allowed us to see conspicuous
cases of contention (e.g., another user ran an application with
regular checkpoints that overlapped with our run). We report
maximum observed bandwidths in all of our plots to give the
best approximation of peak bandwidths.

Throughout the process of optimizing HDF5 and collecting
performance data, we used a modified version of the Integrated
Performance Monitor to perform I/O tracing. A detailed dis-
cussion of these methods for the GCRM benchmark can be
found in [23].

For each of our benchmarks, we also obtained an equivalent
file-per-processor bandwidth by simulating the I/O pattern with
a synthetic IOR test [11]. As stated earlier, file-per-process
writes can usually achieve higher bandwidth than with single-
shared-file writes but have some significant drawbacks. By
running IOR tests in file-per-process mode for the various I/O
patterns, we see what the upper limit is for single-shared-file
and therefore what the goal is for optimizations. Because the
Lustre file system sets a hard limit of 160 OSTs over which a
shared file can be striped, we also restricted IOR to use only
160 OSTs on JaguarPF (out of the 672 available). Although
this may lead to lower bandwidths when compared to other
publications, we believe it would be an unfair comparison if

TABLE I
GCRM PARAMETERS

Cell-centered Data

Cores 640 2,560 10,240 40,960
Time steps 240 60 15 4
File size (GB) 243.8 243.8 243.8 260.0

Edge-centered Data

Cores 640 2,560 10,240 40,960
Time steps 40 10 3 1
File size (GB) 235.8 235.8 283.0 377.3

the IOR tests had access to additional hardware resources.
Also, we made sure to choose a subset of 160 OSTs that
spanned all 96 available OSSs.

We used IOR in POSIX mode, which means it can write a
large amount of data into the OS write buffer, then return a
bandwidth that is actually a measure of the memory bandwidth
and not the I/O bandwidth. To mitigate this effect, we modified
IOR to allocate and touch a dummy array that filled 75%
of available system memory. In previous experiments, we
have found that this a good heuristic for defeating the OS
write cache during benchmarking. This step is necessary to
accurately simulate HPC applications that use a significant
portion of memory for their data and therefore would not leave
memory available for OS write buffers. We did not use the
O_DIRECT flag to disable write buffering completely, because
this would also have less accurately simulated HPC appli-
cations, which typically have some (albeit limited) memory
available for write buffering. We also modified IOR to include
a barrier between “segments” so that we could more accurately
simulate the time-varying nature of our I/O patterns. 2

VII. EXPERIMENTAL RESULTS

Our optimizations outperformed the baseline for all three
benchmarks, on all three test systems, and across a range of
concurrencies. In most cases, we were able to achieve at least
half of the bandwidth of the file-per-processor approach while
writing to a single, shared file. We now describe how we staged
the optimizations and show their progressive improvements in
bandwidth.

A. GCRM

The GCRM benchmark writes a fixed amount of data per
processor per time step (1.6 MB for data-centered data and
9.6 MB for edge-centered), thus the file size scales weakly
for a fixed number of time steps. To achieve strong scaling of
file size (234 GB to achieve roughly 30 seconds of continuous
writing), we weakly scaled down the number of time steps
written per file (see Table I).

Our baseline configuration for the GCRM benchmark was
to write from all processors using the MPI-POSIX virtual
file driver with the default Lustre stripe size of 1 MB and

2Despite these precautions, we did measure three outliers on JaguarPF that
had bandwidths 2× to 3× higher than all other measurements. We suspect
these may have been from caching effects, but were unable to verify this in
the absence of rigorous memory or kernel profiling.

TABLE II
CHOMBO PARAMETERS

JaguarPF

Cores 2,560 10,240 40,960
Files 16 4 1
File size (GB) 45.6 182.4 729.6
Total size (GB) 729.6 729.6 729.6

Franklin & Hopper

Cores 640 2,560 10,240
Files 32 8 2
File size (GB) 11.4 45.6 182.4
Total size (GB) 364.8 364.8 364.8

striping over all available OSTs. We tested two progressive
optimizations (see Figure 7):

1) In “chunking,” we enabled HDF5’s chunking mechanism
together with 1 MB alignment, effectively mapping each
processor’s write call to a single, contiguous HDF5
dataset chunk. We also increased the stripe width to
2 MB for cell-centered data and 10 MB for edge-
centered to map each chunk to a single OST.

2) In “metadata,” we enlarged the size of the chunk index
B-tree nodes and deferred all metadata writes until file
close.

B. Chombo

The Chombo benchmark writes a single time step into a
file, with each processor writing a different amount of data
according to the layout of the adaptive mesh. Axillary 1D
datasets describe which “boxes” belong to which processor
and store the offsets for the boxes into the adaptive mesh
data structure; these writes occur from processor 0 only and
are included in our benchmark timings. It is possible for a
processor to own no data, in which case it makes an empty
hyperslab selection in HDF5. Because IOR does not support
transfer sizes that vary by processor, we estimated the file-per-
processor case by dividing the total file size by the number of
processors and using that uniform transfer size (18,680 KB)
in IOR.

Overall, the file size scales weakly. To achieve strong scaling
of file size, we weakly scaled down the number of files written.
To accommodate 40,960-way concurrency on JaguarPF, we
had to write more data on that system (see Table II).

Our baseline configuration for the Chombo benchmark was
to use the MPI-IO virtual file driver in HDF5 in collective
mode with the CB 0 algorithm. We used the default Lus-
tre stripe size of 1 MB, striped over all available OSTs,
and set cb_nodes to the number of stripes while leaving
cb_buffer_size at the default value of 16 MB. Again,
we tested two progressive optimizations (see Figure 8):

1) In “CB 2 / truncate,” we enabled the CB 2 al-
gorithm, and in the HDF5 layer removed the
MPI_File_set_size call and enabled the round-
robin metadata cache flushing routine.

2) In “stripe size,” we increased the stripe size, testing
values in the range {4, 8, 16, 32, 64} MB. Because the

 0

 5000

 10000

 15000

 20000

 25000

 640 2560

W
rit

e
Ba

nd
wi

dt
h

(M
B/

s)

Cores

Hopper

 0

 5000

 10000

 15000

 20000

 25000

 640 2560 10240

Cores

Franklin

 0

 5000

 10000

 15000

 20000

 25000

 2560 10240 40960

Cell
Data

Cores

JaguarPF

 0

 5000

 10000

 15000

 20000

 25000

 640 2560

W
rit

e
Ba

nd
wi

dt
h

(M
B/

s)

Cores

 0

 5000

 10000

 15000

 20000

 25000

 640 2560 10240

Cores

 0

 5000

 10000

 15000

 20000

 25000

 2560 10240 40960

Edge
Data

Cores

Baseline
Chunking
Metadata

File-per-proc

Fig. 7. Performance data for two configurations of the GCRM benchmark showing progressive optimizations to the HDF5 layer. File-per-processor tests
from IOR show the ceiling we are trying to reach with our shared-filed approach.

 0

 5000

 10000

 15000

 20000

 25000

 640 2560

W
rit

e
Ba

nd
wi

dt
h

(M
B/

s)

Cores

Hopper

 0

 5000

 10000

 15000

 20000

 25000

 640 2560 10240

Cores

Franklin

 0

 5000

 10000

 15000

 20000

 25000

 2560 10240 40960

Cores

JaguarPF
Baseline

CB 2 / truncate
Stripe size

File-per-proc

Fig. 8. Performance data for one configuration of the Chombo benchmark showing progressive optimizations to the MPI-IO and HDF5 layers. File-per-
processor tests from IOR show the ceiling we are trying to reach with our shared-filed approach.

CB 2 algorithm derives the cb_buffer_size value
from the stripe size, this had the effect of increasing
the amount of buffering relative to the amount of syn-
chronization among CB aggregator nodes. In almost all
cases this led to better performance, except on Hopper
at 640-way concurrency where the 1 MB buffer size was
optimal.

C. VORPAL

The VORPAL benchmark writes a slightly varying amount
of 3D field data per processor per time step. We used two
different grid sizes, 403 and 803, with variations of ±1, leading
to 1,390 to 1,615 KB writes at 403 and 11,556 to 12,456 KB
writes at 803. Again, we had to pick a uniform transfer size
for IOR, and used the transfer sizes 1,500 KB and 12,000 KB

that correspond to the uniform case where all processors have
the same field dimensions (see Table III).

Our baseline and optimizations for the VORPAL benchmark
(see Figure 9) were the same as for the Chombo benchmark.
Like with the Chombo benchmark, increasing the stripe size
did not always improve performance, as was the case on
JaguarPF.

D. Analysis

For the GCRM pattern, a relatively small amout of metadata
(only a few MBs) can cause catastrophic slowdowns when
the metadata writes are pooly aligned and fragmented. This
effect, on Franklin specifically, is described in detail and with
supporting I/O traces in [23]. Our optimizations to consolidate
and align metadata writes contribute large performance gains,

 0

 5000

 10000

 15000

 20000

 25000

 640 2560

W
rit

e
Ba

nd
wi

dt
h

(M
B/

s)

Cores

Hopper

 0

 5000

 10000

 15000

 20000

 25000

 640 2560 10240

Cores

Franklin

 0

 5000

 10000

 15000

 20000

 25000

 2560 10240 40960

403

Block

Cores

JaguarPF

 0

 5000

 10000

 15000

 20000

 25000

 640 2560

W
rit

e
Ba

nd
wi

dt
h

(M
B/

s)

Cores

 0

 5000

 10000

 15000

 20000

 25000

 640 2560 10240

Cores

 0

 5000

 10000

 15000

 20000

 25000

 2560 10240 40960

803

Block

Cores

Baseline
CB 2 / truncate

Stripe size
File-per-proc

Fig. 9. Performance data for two configurations of the VORPAL benchmark showing progressive optimizations to the MPI-IO and HDF5 layers. File-per-
processor tests from IOR show the ceiling we are trying to reach with our shared-filed approach.

TABLE III
VORPAL PARAMETERS

JaguarPF

Cores 2,560 10,240 40,960
403 time steps 128 32 8
403 file size (GB) 468.5 468.5 468.5
803 time steps 16 4 1
803 file size (GB) 468.7 468.7 468.7

Franklin & Hopper

Cores 640 2,560 10,240
403 time steps 256 64 8
403 file size (GB) 234.2 234.2 234.2
803 time steps 32 8 2
803 file size (GB) 234.3 234.3 234.3

most notably on Franklin, but also on Hopper and JaguarPF
at higher concurrency. At lower concurrency, there are many
fewer write calls per time step and per OST (since both Hopper
and JaguarPF have more OSTs available then Franklin), which
causes worse performance through a “Law of Large Numbers”
effect that is also detailed in [23].

For the VORPAL and Chombo patterns, increasing the stripe
size for the CB 2 algorithm leads to performance gains on
Hopper and Franklin because the larger buffer size during the
aggregation phase reduces the frequency of synchronization
points. Surprisingly, the increased buffer size seems to have
little effect on performance on JaguarPF, which may be related
to the larger scale and complexity of its interconnect. Yu and
Vetter’s [24] modifications to introduce “partitioned collective
I/O” to Cray’s CB 0 algorithm on the older Jaguar XT4

system demonstrated impressive performance gains, and a
similar approach to tuning the communication in the aggre-
gation phase of the CB 2 algorithm is a promising direction
for future research. Tailoring the communication phase of
collective buffering to the underlying network topology was
also a successful strategy for Yu et al. [25] in their I/O tuning
of the Blue Gene/L architecture.

File-per-processor performance on JaguarPF seems to drop
at 40,960-way concurrency for all I/O patterns. We believe this
is caused by the increasing metadata pressure of creating and
writing to so many individual files. This is the same conjecture
that Fahey et al. [26] made to explain a similar decline in
performance at scale for the Lustre file system on Jaguar XT4.

VIII. CONCLUSION AND FUTURE WORK

We have demonstrated a collection of optimizations for
MPI-IO and HDF5 that enable high-performance, shared-file
I/O on Lustre file systems. Our results cover three commonly-
used HPC I/O patterns and were validated across three dif-
ferent Lustre configurations at a range of concurrencies up
to 40,960-way parallel. Overall, we are able to demonstrate
performance that is much more competitive with file-per-
processor performance than our unoptimized baseline.

Although some of the optimizations have dramatic effects
on data layout, they require no changes to the user’s data
model, which points to the advantages of HDF5’s separation
of data model from data layout. Moreover, all of the opti-
mizations are compliant with the existing HDF5 file format,
which preserves backward compatibility. The optimizations

will also be transparently usable by the netCDF-4 I/O library
used by the Community Climate System Model (CCSM4),
which will be important for accommodating the huge data
volumes produced by that codebase as is anticipated over the
next five years.

We expect that future improvements to MPI-IO and HDF5
will continue to focus on optimizing aggregation and metadata
operations, and could include the following:

Reducing communication overhead in MPI-IO. As de-
scribed earlier, information is exchanged among all processes
as a step in the collective buffering process. The overhead is
significant in some cases and also creates a synchronization
point that may be avoidable. Yu and Vetter [27] have studied
this phenomenon on the Cray XT and proposed a partitioned
approach to collective communication that can yield up to 4×
improvements in collective I/O performance.

Topologically aware assignment of aggregators in MPI-
IO. Because aggregators must send data through the intercon-
nect to get to the file system, placing aggregators closer to the
I/O nodes could reduce network traffic.

Dedicating processes to serve as aggregators in MPI-IO.
As mentioned in Section II-B, setting aside a set of processes
solely responsible for managing collective I/O operations
would allow more concurrency of computation and I/O.

Aggregating HDF5 metadata operations. Using collective
I/O operations when flushing metadata items will give the
MPI-IO implementation the maximum amount of information
about the I/O operation to perform, allowing it to aggregate the
I/O accesses and optimize them for the underlying parallel file
system. HDF5’s caching mechanism could also be modified to
aggregate multiple metadata accesses into fewer, larger ones.

ACKNOWLEDGMENT

We thank Noel Keen (LBNL) for sharing his source code
for the standalone Chombo benchmark and for initially dis-
covering the performance issue with truncates on Lustre.

This research used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725;
and resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

REFERENCES

[1] “Lustre,” http://www.lustre.org/.
[2] The HDF Group, “Hierarchical data format version 5,” 2000–2010, http:

//www.hdfgroup.org/HDF5.
[3] Unidata, “netCDF (network Common Data Form),” http://www.unidata.

ucar.edu/software/netcdf.
[4] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,

R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF:
A high-performance scientific I/O interface,” in SC ’03: Proceedings of
the 2003 ACM/IEEE conference on Supercomputing, 2003.

[5] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, “PLFS: a checkpoint filesystem for parallel
applications,” in SC ’09: Proceedings of the 2009 ACM/IEEE Conference
on Supercomputing, Portland, Oregon, 2009.

[6] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable, metadata
rich IO methods for portable high performance IO,” in IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), Rome,
Italy, 2009.

[7] R. Thakur, W. Gropp, and E. Lusk, “Optimizing noncontiguous accesses
in MPI-IO,” Parallel Computing, vol. 28, no. 1, pp. 83–105, 2002.

[8] J. M. del Rosario, R. Bordawekar, and A. Choudhary, “Improved parallel
I/O via a two-phase run-time access strategy,” SIGARCH Computer
Architecture News, vol. 21, no. 5, pp. 31–38, 1993.

[9] R. Thakur and A. Choudhary, “An extended two-phase method for
accessing sections of out-of-core arrays,” Scientific Programming, vol. 5,
no. 4, pp. 301–317, 1996.

[10] B. Nitzberg and V. Lo, “Collective buffering: Improving parallel I/O
performance,” in HPDC ’97: Proceedings of the 6th IEEE International
Symposium on High Performance Distributed Computing, 1997.

[11] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the
I/O performance of HPC applications using a parameterized synthetic
benchmark,” in SC ’08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, Austin, Texas, 2008.

[12] W.-k. Liao and A. Choudhary, “Dynamically adapting file domain
partitioning methods for collective I/O based on underlying parallel
file system locking protocols,” in SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, Austin, Texas, 2008.

[13] P. M. Dickens and J. Logan, “A high performance implementation
of MPI-IO for a Lustre file system environment,” Concurrency and
Computation: Practice and Experience, 2009.

[14] K. Coloma, A. Ching, A. Choudhary, W. Liao, R. Ross, R. Thakur, and
L. Ward, “A new flexible MPI collective I/O implementation,” in IEEE
Conference on Cluster Computing, 2006.

[15] A. Nisar, W.-k. Liao, and A. Choudhary, “Scaling parallel I/O perfor-
mance through I/O delegate and caching system,” in SC ’08: Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, Austin, Texas,
2008.

[16] D. A. Randall, T. D. Ringler, R. P. Heikes, P. Jones, and J. Baumgardner,
“Climate modeling with spherical geodesic grids,” Computing in Science
and Engineering, vol. 4, pp. 32–41, Sep/Oct 2002.

[17] K. Schuchardt, “Community access to Global Cloud Resolving Model
and data,” http://climate.pnl.gov/.

[18] Andreas Adelmann, Achim Gsell, B. Oswald, T. Schietinger, E. Wes
Bethel, John Shalf, Cristina Siegerist, Kurt Stockinger, Prabhat and
Mark Howison, “H5part software,” 2006–2010, https://codeforge.lbl.
gov/projects/h5part/.

[19] “VORPAL, Versatile Plasma Simulation Code,” http://www.txcorp.com/
products/VORPAL/.

[20] “Chombo, Infrastructure for Adaptive Mesh Refinement,” http://seesar.
lbl.gov/ANAG/chombo/.

[21] G. Shipman, D. Dillow, S. Oral, and F. Wang, “The Spider center wide
file system: From concept to reality,” in Proceedings of the Cray User
Group (CUG) Conference, Atlanta, GA, May 2009.

[22] J. Mache, V. Lo, and S. Garg, “The impact of spatial layout of jobs
on I/O hotspots in mesh networks,” Journal of Parallel and Distributed
Computing, vol. 65, no. 10, pp. 1190–1203, 2005.

[23] A. Uselton, M. Howison, N. Wright, D. Skinner, N. Keen, J. Shalf,
K. Karavanic, and L. Oliker, “Parallel I/O performance: From events to
ensembles,” in IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Atlanta, Georgia, 2010.

[24] W. Yu, J. Vetter, R. S. Canon, and S. Jiang, “Exploiting Lustre file
joining for effective collective I/O,” in Proceedings of the Seventh IEEE
International Symposium on Cluster Computing and the Grid (CCGrid
07), 2007.

[25] H. Yu, R. K. Sahoo, C. Howson, J. G. C. G. Almási, M. Gupta,
J. E. Moreira, J. J. Parker, T. E. Engelsiepen, R. B. Ross, R. Thakur,
R. Latham, and W. D. Gropp, “High performance file I/O for rhe Blue
Gene/L supercomputer,” in International Symposium on Performance
Computer Architecture, Austin, Texas, 2006.

[26] M. Fahey, J. Larkin, and J. Adams, “I/O performance on a massively
parallel Cray XT3/XT4,” in IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2008.

[27] W. Yu and J. S. Vetter, “ParColl: Partitioned collective I/O on the
Cray XT,” in ICPP ’08: Proceedings of the 2008 37th International
Conference on Parallel Processing, 2008, pp. 562–569.

http://www.lustre.org/
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://climate.pnl.gov/
https://codeforge.lbl.gov/projects/h5part/
https://codeforge.lbl.gov/projects/h5part/
http://www.txcorp.com/products/VORPAL/
http://www.txcorp.com/products/VORPAL/
http://seesar.lbl.gov/ANAG/chombo/
http://seesar.lbl.gov/ANAG/chombo/

	Introduction
	Background
	HDF5
	Related Work

	Software Modifications
	HDF5
	MPI-IO

	Application Benchmarks
	Global Cloud Resolving Model
	VORPAL
	Chombo

	Experimental Testbed
	JaguarPF
	Franklin
	Hopper (Phase 1)

	Methodology
	Experimental Results
	GCRM
	Chombo
	VORPAL
	Analysis

	Conclusion and Future Work
	References

